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Abstract

To test the hypothesis that infectious exposures may be involved in glioma aetiology, we have analysed space–time clustering and
seasonal variation using population-based data from the South of the Netherlands between 1983 and 2001. Knox tests for space–
time interactions between cases were applied, with spatial coordinates of the addresses at time of diagnosis, and with distance to the
Nth nearest neighbour. Data were also analysed by a second order procedure based on K-functions. Tests for heterogeneity and
Edwards� test for sinusoidal variation were applied to examine seasonal variation of incidence. There was statistically significant
space–time clustering in the Eastern, but not in the Western part of the region. Clustering was only present in adults, particularly
in less densely populated areas. There was no evidence for seasonal variation. The results support a role for infectious exposures in
glioma aetiology that may act preferentially in certain geographical areas.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Gliomas are the most common primary brain tu-
mours in children and adults. Thus far only ionising
radiation has been established as an aetiological factor
[1,2], and few genetic syndromes exist which predispose
to glioma [3,4]. These factors however can only explain a
small minority of cases, whilst the evidence for many
0959-8049/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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other proposed risk factors is inconclusive [5]. A role
for infection in the aetiology of glioma has been sug-
gested. Certain viruses, including polyomaviruses, JC
virus, BK virus and simian virus 40 (SV40) have been
considered as possible aetiological agents but the find-
ings have been inconsistent [6,7]. If infectious exposures
are involved, the distribution of cases may exhibit
space–time clustering. This would happen if an aetiolog-
ically linked infectious exposure occurred in �mini-
epidemics� and would be detected when the lag time from
exposure to diagnosis is short or relatively constant.

Space–time clustering is said to occur when excess
numbers of cases are observed within small geographical
locations at limited periods of time that cannot be
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explained in terms of general excesses in those locations
or at those times. The presence of seasonal variation
would also provide indirect evidence for an aetiology
involving infections that exhibited seasonal epidemicity.
Examples of infections that display such epidemicity
include the common cold, influenza and measles. Space–
time clustering has been examined previously for child-
hood brain tumours using data from the Manchester
Children�s Tumour Registry (MCTR). Statistically sig-
nificant evidence for space–time clustering was found,
particularly for astrocytoma and ependymoma, with
an excess of patients born in Autumn or Winter [8].
However, in a study investigating childhood astrocy-
toma in Sweden, space–time clustering could not be
shown [9]. To date, studies examining space–time clus-
tering in adult glioma have not been published.

In the present study, we investigated space–time clus-
tering and seasonal variation in adult and childhood gli-
oma to assess the possibility of an infectious aetiology,
using population-based data from cancer registries in
the South of the Netherlands.
2. Patients and methods

The Eindhoven Cancer Registry within the frame-
work of the Comprehensive Cancer Centre South and
the Cancer Registry of Rotterdam registered all glioma
patients in North Brabant. This province in the South
of the Netherlands has 2.3 million inhabitants and cov-
ers an area of nearly 5000 km2. The cancer registries in
the Netherlands are characterised by high quality inci-
dence data and near complete ascertainment [10,11].
Data were available for 1983–2001 for the Eastern part
and 1989–2001 for the Western part of the province (the
Eastern and Western parts are contiguous). To avoid
any methodological bias, the Eastern and Western areas
were analysed separately. All cases diagnosed with a
central nervous system glioma were analysed.

For each case of glioma, geographical coordinates
were allocated to the postcode of the address at the
time of diagnosis. The geographical coordinates were
obtained using the Dutch Triangular System (Rijksd-
riehoeksmeting; www.rdnap.nl), the most widely used
geographical reference system in the Netherlands. This
enabled spatial referencing of the Easting and Northing
coordinates to within 0.1 km of the actual address. For
7% of the cases in the total area of North Brabant and
for all of those in a small region in the most Western
part of the Western area, only partial postcodes (4 dig-
its) were available, locating cases to the level of neigh-
bourhoods and small municipalities. For these cases a
random coordinate was used within the specified area.
Sensitivity analyses were performed by repeating the
analyses with another two different random coordinates.
This created three data sets for analysis.
The following aetiological hypotheses were tested: (i)
a primary factor influencing geographical or temporal
heterogeneity of incidence of gliomas is related to expo-
sure to an infectious or other similarly occurring envi-
ronmental agent relatively close to disease onset; and
(ii) geographical or temporal heterogeneity of incidence
of gliomas is modulated by differences in patterns of
exposure related to level of population density. Space–
time interactions based on time and place of diagnosis
were tested.

Knox space–time clustering tests were applied to the
data with thresholds fixed, a priori, as: close in space,
less than 5 km; and close in time, less than one year
apart [12]. These limits are arbitrary, but have been
used in a number of studies of space–time clustering of
childhood cancers from North West England [8,13–
16]. Furthermore, this problem is overcome by using
the K-function method (see below). In the Knox test, a
pair of cases is regarded as being in �close proximity� if
they are both diagnosed at addresses that are simulta-
neously close in space and at times that are close. The
number of pairs of cases observed to be in close proxim-
ity was obtained (O) and the number of pairs of cases
expected to be in close proximity was calculated (E). If
O exceeded E there was space–time clustering and statis-
tical tests were used to determine whether this excess was
statistically significant. The magnitude of the excess (or
deficit) was estimated by calculating S = ((O � E)/
E) · 100. To adjust for the effect of different population
densities, the tests were repeated replacing geographical
distance thresholds by distance to the Nth nearest neigh-
bour, using all locations of all the cases in the data set. N
was chosen such that the mean distance was 5 km and
was found to be N = 30.

Two problems are apparent with the Knox test. First,
boundary problems may be important since it can be
impossible, or less probable, for some cases to be close
in one dimension to other cases. The second problem
concerns the arbitrariness of the thresholds chosen. A
simplification of a second order procedure based on K-
functions was used in the present analyses to overcome
the problem of arbitrary boundaries [17]. This procedure
involved a set of 225 Knox-type calculations where the
boundaries changed over a pre-specified set of values
(for close times, t = 0.1,0.2, . . ., 1.5 years and for close
in space, s = 0.5,1,1.5, . . ., 7.5 km). Statistical signifi-
cance was assessed by simulation. Nearest neighbour
(NN) approaches were also used (analogous to those de-
scribed in relation to classical Knox tests).

Two age-groups were studied: 0–14, 15+ years. These
age-groups were selected to attempt to differentiate
between the potential effect of infectious exposures for
children and older cases. For younger cases, genetic pre-
disposition would be predicted to be an important com-
ponent of aetiology in combination with the triggering
infectious exposure, whilst for older cases the main
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aetiological factor would be predicted to be the infec-
tious exposure that precipitates the onset of the tumour.

To test the effect of the opportunity for exposure to
infectious agents, via closer person to person contact,
analyses were performed for two levels of population
density. Addresses were classified as being located in a
more densely populated area, or being located in a less
densely populated area. For addresses at time of diagno-
sis the median distance for the 30th nearest neighbour
was found. Diagnosis locations, whose 30th nearest
neighbour was less than the median distance, were clas-
sified in the �more densely populated� category. Diagno-
sis locations, whose 30th nearest neighbour was greater
than the median distance, were classified in the �less den-
sely populated� category. Analysis was undertaken by
considering pairs of cases including at least one case
from the �more densely populated� category and pairs
of cases including at least one case from the �less densely
populated� category. The observed and expected num-
bers of pairs of cases were calculated where: (i) both
cases came from a �more densely populated� area; (ii)
both cases came from a �less densely populated� area;
and (iii) one case came from a �more densely populated
area� and the other case came from a �less densely pop-
ulated� area. It should be noted that these analyses (espe-
cially the analyses of clustering pairs including at least
one case from the �less densely populated� category)
are potentially subject to a strong diluting influence
from edge effects since neither the �more densely popu-
lated� areas nor the �less densely populated� areas form
a single spatially contiguous zone.

Of the three data sets, for all the analyses, the most
conservative results in terms of P-value and for the Knox
test, strength (S) within P-value are presented in tables.
Statistical significance was indicated if P < 0.05, using
at least 2 of the 4 methods (the geographical or NN ver-
Table 1
Space–time clustering tests for glioma cases (all ages) in the South of the Net
and time period

Area and time period (number of cases) Knox test (observed space–tim
space–time pairs, strengthb, P

Geographical distanced N

East 1983–2001 (752 cases) O = 2550; E = 2482.9 O

S = 2.7%; P = 0.09 S

West 1989–2001 (793 cases) O = 2851; E = 2784.8 O

S = 2.4%; P = 0.11 S

a Cases are close in time if dates of diagnosis differ by less than 1 year.
b Strength (S) = {(Observed � Expected)/Expected} · 100 counts of pairs
c 1-sided P-value derived from the Poisson distribution.
d When using geographical distance cases are close in space if their locatio
e When using nearest neighbour (NN) thresholds cases are close in space if

total data set.
f Cases are close in time if dates differ by <t, where t is in the range 1–18
g P-value obtained by simulation (999 runs) with dates of diagnosis rando
h Cases are close in space if distances between their locations differ by <s,
i Cases are close in space if either is within the distance to theNth nearest nei
sions of the Knox test and the K-function method), and
including a NN threshold version.

To examine seasonal variation the cases were exam-
ined for monthly variation in dates of birth and diagno-
sis using: (i) a v2 test for heterogeneity, and (ii) Edwards�
test for sinusoidal variation [18]. The overall distribution
of months of birth and diagnosis of all cancer patients
registered by the Eindhoven Cancer Registry were used
to correct the underlying variation in birth and diagno-
sis dates.
3. Results

For the province of North Brabant there were 1545
cases of glioma diagnosed between 1983 and 2001
(59.5% males, median age at diagnosis 52 years, range
0–92). There were 37 cases of pilocytic astrocytoma,
1064 cases of other astrocytoma, 131 cases of oligoden-
droglioma, 79 cases of ependymoma and 234 cases of
other glioma including glioma not otherwise specified
(NOS) and clinically diagnosed tumours. There were
124 cases of glioma in the most Western part of the Wes-
tern area with only partial postcodes available.

There was statistically significant space–time cluster-
ing for cases from the Eastern, but not for cases from
the Western part of the province (P < 0.05 using at
least 2 methods and including a NN threshold version;
Table 1). Statistically significant space–time clustering
was found for cases of glioma aged over 15 years
(P < 0.05 using at least 2 methods and including a
NN threshold version), but not for children aged 0–
14 years. Again this was apparent for cases from the
East but not the West (Table 2). There was also no
cross-clustering between the older (aged 15+ years)
and younger cases (aged 0–14 years). When testing
herlands and diagnosed during the period 1983–2001, analysed by area

e pairsa, expected
-valuec)

K-function analysisf (P-valueg)

N thresholde Geographical distanceh NN thresholdi

= 1659; E = 1555 P = 0.14 P = 0.01
= 6.7%; P = 0.005

= 2411; E = 2366 P = 0.34 P = 0.32
= 1.9%; P = 0.18

which are close in time and space.

ns are <5 km apart.
the locations of one (or both) is nearer than the other�s 30th NN in the

months.
mly re-allocated to the cases in the analysis.
where s is in the range 0.5–7.5 km.
ghbour of the other (in the total data set), whereN is in the range 23–37.



Table 2
Space–time clustering tests for glioma cases in the South of the Netherlands and diagnosed during the period 1983–2001, analysed by age-group, area
and time period

Age-group, area and time period
(number of cases)

Knox test (observed space–time pairsa, expected
space–time pairs, strengthb, P-valuec)

K-function analysisf (P-valueg)

Geographical distanced NN thresholde Geographical distanceh NN thresholdi

East, 1983–2001 Age 0–14, (56) O = 8; E = 10.5 O = 6; E = 8.6 P = 0.94 P = 0.89
S = �23.5%; P = 0.72 S = �29.9%; P = 0.75

Age 15+, (696) O = 2239; E = 2161.2 O = 1440; E = 1335.6 P = 0.06 P = 0.003
S = 3.6%; P = 0.05 S = 7.8%; P = 0.003

West, 1989–2001 Age 0–14, (45) O = 9; E = 10 O = 4; E = 7.8 P = 0.52 P = 0.79
S = �9.6%; P = 0.54 S = �48.5%; P = 0.89

Age 15+, (748) O = 2543; E = 2493.6 O = 2162; E = 2120.3 P = 0.44 P = 0.33
S = 2.0%; P = 0.16 S = 2.0%; P = 0.19

a Cases are close in time if dates of diagnosis differ by less than 1 year.
b Strength (S) = {(Observed � Expected)/Expected} · 100 counts of pairs which are close in time and space.
c 1-sided P-value derived from the Poisson distribution.
d When using geographical distance cases are close in space if their locations are <5 km apart.
e When using nearest neighbour (NN) thresholds cases are close in space if the locations of one (or both) is nearer than the other�s 30th NN in the

total data set.
f Cases are close in time if dates differ by <t, where t is in the range 1–18 months.
g P-value obtained by simulation (999 runs) with dates of diagnosis randomly re-allocated to the cases in the analysis.
h Cases are close in space if distances between their locations differ by <s, where s is in the range 0.5–7.5 km.
i Cases are close in space if either is within the distance to theNth nearest neighbour of the other (in the total data set), whereN is in the range 23–37.
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for population density there was statistically significant
space–time clustering involving cases from �less� densely
populated areas in the East but not the West (Table 3).
Finally, there was no evidence of seasonal variation
within both age groups using either the v2 test for het-
erogeneity or Edwards� test for sinusoidal variation
(data not shown).
Table 3
Space–time clustering tests for glioma cases in the South of the Netherlands
density, area and time period

Population density, area and
time period

Knox test (observed space–time pairs
space–time pairs, strengthb, P-valuec

Geographical distanced NN t

East, 1983–2001 MDPj O = 2221; E = 2172.3 O = 1
S = 2.2%; P = 0.15 S = 3

LDPk O = 463; E = 444.3 O = 8
S = 4.2%; P = 0.19 S = 9

West, 1989–2001 MDPj O = 2385; E = 2335.8 O = 1
S = 2.1%; P = 0.16 S = 1

LDPk O = 791; E = 786.0 O = 1
S = 0.6%; P = 0.43 S = 0

a Cases are close in time if dates of diagnosis differ by less than 1 year.
b Strength (S) = {(Observed � Expected)/Expected} · 100 counts of pairs
c 1-sided P-value derived from the Poisson distribution.
d When using geographical distance cases are close in space if their locatio
e When using nearest neighbour (NN) thresholds cases are close in space if

total data set.
f Cases are close in time if dates differ by <t, where t is in the range 1–18
g P-value obtained by simulation (999 runs) with dates of diagnosis rando
h Cases are close in space if distances between their locations differ by <s,
i Cases are close in space if either is within the distance to theNth nearest nei
j P1 case from a more densely populated (MDP) area.
k P1 case from a less densely populated (LDP) area.
4. Discussion

To our knowledge, we are the first to apply formal
statistical methods on population-based incidence data
to study space–time clustering in adult glioma. Space–
time clustering based on time and place of diagnosis
was found. Clustering was only present in adults (aged
and diagnosed during the period 1983–2001, analysed by population

a, expected
)

K-function analysisf (P-valueg)

hresholde Geographical distanceh NN thresholdi

039; E = 1002.9 P = 0.19 P = 0.14
.6%; P = 0.13
23; E = 751.1 P = 0.25 P = 0.02
.6%; P = 0.005

486; E = 1459.1 P = 0.37 P = 0.49
.8%; P = 0.24
370; E = 1362.9 P = 0.57 P = 0.52
.5%; P = 0.43

which are close in time and space.

ns are <5 km apart.
the locations of one (or both) is nearer than the other�s 30th NN in the

months.
mly re-allocated to the cases in the analysis.
where s is in the range 0.5–7.5 km.
ghbour of the other (in the total data set), whereN is in the range 23–37.
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15+ years) from the Eastern part of the province, partic-
ularly in less densely populated areas. Conversely, there
was no evidence for space–time clustering amongst chil-
dren (aged 0–14 years). Seasonal variation in incidence
of glioma could not be shown.

The cancer incidence data from the Comprehensive
Cancer Centres in the Netherlands are characterised
by high quality and near complete ascertainment
[10,11]. Pathological diagnoses were derived from differ-
ent sources including the Dutch computerised nation-
wide registry of histo- and cytopathology (PALGA)
and the Dutch Medical Register (LMR). Methods for
data collection were the same in the Western and the
Eastern areas, and have not changed since 1983. For
all cases, the address at diagnosis was recorded, as well
as the last known address which is regularly updated
using municipal records. For 24 cases only, these ad-
dresses were different indicating a low possibility of bias
due to migration. Otherwise, migration may lead to
either an underestimation or overestimation of the
strength of clustering.

Unfortunately it was not possible to analyse the data
as one entity because cases were not consistently avail-
able for the entire study area since 1983. Thus separate
analyses were undertaken. However, comparison be-
tween the East and the West was possible. There is no
method for combining the results of these separate anal-
yses as the effect of time and space boundaries would
invalidate such an attempt.

The problem of cases with only partially known post-
codes was solved by sensitivity analyses using different
data sets with random coordinates within the specified
area. The analyses were performed using rigorous statisti-
cal methods. The many tests involved in this study raised
the possibility of a multiple testing problem. Although
analyses were performed following prior hypotheses and
although only the most conservative results were used,
the results still have to be interpreted with care. The num-
ber of cases in the younger age group (0–14 years) was
small compared with the study fromNorthWest England
[8], so there wasmuch less power in the present study to be
able to detect clustering in this age group.

It is possible that the methodology may be biased if
there are certain differential population changes during
the time period, especially when the population grows
or declines at different rates in different areas of the
study region. A method to deal with this particular type
of problem has been proposed [19], but it would not be
possible to implement this procedure on the current data
set, because it requires small area population data by
month that are not available. However, it must be
stressed that the current analyses provide a description
of the space–time clustering patterns in the data,
whether real or artifactual. Additionally, variations in
population growth are not thought to be important in
the current data set.
The pattern of space–time clustering found in this
study is consistent with an exposure occurring at a rela-
tively short time period before onset of the disease. It is
likely that this exposure is more important among those
aged over 15 years. The nature of space–time interaction
implies an exposure emerging at many points in both
place and time. Therefore, more sustained exposures
which are geographically fixed and present for long peri-
ods of time (e.g., power lines, environmental pollution
or industry) can be excluded. The pattern is however
more consistent with an infectious agent. Since there
was only space–time clustering in the Eastern part of
the province, this agent is likely to act in limited geo-
graphical areas, without spreading to other regions. This
would imply that this agent does not have the capability
for rapid spreading, or that it is linked to, e.g., industries
or environments that are more common in the East. The
more marked clustering in less densely populated areas
might indicate that the aetiological agent is more preva-
lent in these environments. We however do not know of
any common industry or environment that is typical for
the Eastern part of the province of North Brabant.

Evidence for the involvement of infections in the aeti-
ology of glioma comes primarily from studies in experi-
mental animals and from the isolation of several viruses
from human tumour material. The importance of these
findings to glioma aetiology is uncertain. Few epidemio-
logical studies addressing the role of infections have
been published, which may also indicate unpublished
negative results. For adult glioma, antibody titres to
Toxoplasma gondii were linked to astrocytoma [20],
although an association could not be confirmed by oth-
ers [21]. For childhood glioma, four epidemiological
studies suggested an infectious component to aetiology
[22–25], whilst another case–control study found no
such relations [26].

No studies concerning space–time clustering in adults
have been published thus far. Therefore comparisons
can only be made for childhood brain tumours. In the
present study, no clustering was detected for the youn-
gest age category. Also, no space–time clustering was
found in childhood astrocytoma in Sweden [9]. Space–
time clustering was however reported for childhood
brain tumours using population-based data from the
Manchester Children�s Tumour Registry (MCTR) [8].
Strong evidence for space–time clustering was found
for astrocytoma, ependymoma and all glioma com-
bined. The present study contained far fewer cases of
childhood glioma than the MCTR study, whilst the
Swedish study used a different methodology. It is possi-
ble that the lack of space–time clustering in the present
study is due to insufficient power to detect such an effect.

We found no evidence for seasonal variation in gli-
oma incidence. In earlier studies however, seasonal var-
iation was observed for childhood astrocytoma and
ependymoma [8], for all childhood brain tumours [27],
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and for adult glioma [28]. All studies reported excesses
in incidence for late autumn and winter births. The first
two studies concerned childhood glioma and brain tu-
mours only, probably explaining most of the discrepan-
cies with the present study in which there was insufficient
power owing to a lack of childhood cases. The third
study investigating adult glioma used a different meth-
odology. Furthermore, we used a robust method of
adjusting variations in birth and diagnosis date with
the overall distribution of months of birth and diagnosis
for all cancer patients registered by the cancer registry.

In summary, space–time clustering was found for
cases of glioma from the Eastern part of the province,
but only for adults aged >15 years. The results are con-
sistent with an infectious agent, mainly acting in limited,
less densely populated geographical areas without
spreading to other regions. It is difficult to draw any firm
conclusions concerning the childhood cases (aged 0–14
years), due to small numbers.

It is not clear whether there are one or more candi-
date infections or whether infectious agents in general
act as a tumour promoter. Further research should in-
clude both epidemiological and laboratory investiga-
tions. An ecological investigation could relate
incidence rates to levels of deprivation and studies of
spatial clustering could determine if there are small areas
with sustained high incidence. Laboratory studies might
examine differences in the occurrence of specific putative
agents between �clustering� and �non-clustering� cases.
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